
IML Gaussian Mixture Models Adrian Hirt

0 A note on notations

Please read the equations carefully, as the capital sigma Σ and the sum operator
∑

look quite similar.
The sum operator is larger however, and usually has the bounds displayed underneath and over it.

1 Gaussian Mixtures

If we assume P (X|y) is Gaussian, we can represent the data X as a mixture of several gaussian models.
This means each point does not belong to a single cluster, but belongs to multiple clusters with a certain
probability:

Fig. 1: Left: The 3 different gaussians; Right: The ”mixture” of those gaussians

We can write this as a convex-conbination of Gaussian distributions:

P (x|θ) = P (x|µ,Σ, w) =

c∑
i=1

wiN (x;µi,Σi)

where wi ≥ 0 and
∑
i

wi = 1

1.1 MLE for Gaussian mixtures

We can formulate the previous problem as a optimization problem:

L(w1:k, µ1:k,Σ1:k) = −
n∑
i=1

log

k∑
j=1

wjN (xi|µj ,Σj)

We’d like to solve argminL(w1:k, µ1:k,Σ1:k), however this is a nonconvex objective and therefore difficult
to solve.
We could try to apply (stochastic) gradient descent, however the covariance matrices must remain sym-
metric positive definite, and this might be difficult to maintain.

1.2 GMM vs. Gaussian Bayes Classifier

The joint distribution P (z, x) = wzN (x|µz,Σz) of (cluster index, features) is identical to the generative
model used by the Gaussian Bayes Classifier (GBC).

The main difference between GBCs and GMMs: In the GMMs, the label (cluster) variable z is un-
observed. This means that fitting a GMM is the same as training a GBC without labels.

1



IML Gaussian Mixture Models Adrian Hirt

2 Hard-EM algorithm

The Hard-EM (Expectation maximization) algorithm can be used to predict the labels we don’t have.
It works as follows:

Initialize the parameters θ(0). This has to be done carefully, as it is a non-convex optimization
problem. As in previous lectures, z are all latent variables that we optimize over.

For t = 1, 2, . . . do:

E-step: Predict the most likely class for each datapoint (zi is the ”hidden label” of the i-th
datapoint)

z
(i)
i = argmax

z
P (z|xi, θ(t−1)) = argmax

z
P (z|θ(t−1))P (xi|z, θ(t−1))

This is just taking the current model, apply Bayes’ rule such that we can get the most likely label
by multiplying the prior probability of that label (cluster) with the likelihood.

After doing that for all datapoints xi ∈ X, we have complete data:

D(t) = {(x1, z(t)1 ), . . . , (xn, z
(t)
n )}

M-step: (Maximization Step): Compute MLE same way as we did for the Gaussian Bayes
classifier:

θ(t) = argmax
θ

P (D(t)|θ)

2.1 Problems with Hard-EM

With the Hard-EM approach, several problems can arise. As an example, take a look at the two pictures
below. The data was generated by a single Gaussian (left picture), however the Hard-EM approach
generates the fitting (clustering) in the right picture:

Fig.2: Comparision between the generating Gaussian and the Hard-EM fit

The problem with the Hard-EM approach is that the points are assigned a fixed label, even though
the model is uncertain. Intuitively, this tries to extract ”too much information” from a single point.
This works especially poorly if the clusters are overlapping.

2



IML Gaussian Mixture Models Adrian Hirt

3 Soft-EM algorithm

3.1 Posterior probabilities

If we’re given a model P (zθ), P (x|z, θ). For each point x ∈ X we can compute a posterior distribution
over cluster membership. This means inferring the distributions over the hidden variables z:

γj(x) = P (Z = j|x, σ, µ, w) =
wjP (x|σj , µj)
K∑
l=1

wlP (Σl, µl)

where K is the number of Gaussians we want to model.

In other words: for each point x we can compute the probability of it belonging to cluster j, which we
represent by γj(x).

3.2 The Soft-EM algorithm

As the MLE equations for µ,Σ, w are coupled, they are difficult to solve jointly, and as such the MLE
minimization problem is hard to solve.

However, we can use the Soft-EM algorithm to solve this problem iteratively:

While not converged do:

E-step: Calculate the cluster membership weights γ
(t)
j (xi) for each point xi and each cluster

j using the estimates of µ(t−1), Σ(t−1) and w(t−1) from the previous iteration:

γ
(t)
j (xi) = P (Z = j|xi, µ(t−1),Σ(t−1), w(t−1))

M-step: Fit the clusters to weighted data points:

w
(t)
j ←

1

n

n∑
i=1

γ
(t)
j (xi) µ

(t)
j ←

n∑
i=1

γ
(t)
j (xi)xi

n∑
i=1

γ
(t)
j (xi)

Σ
(t)
j ←

n∑
i=1

γ
(t)
j (xi)(xi − µ(t)

j )(xi − µ(t)
j )T

n∑
i=1

γ
(t)
j (xi)

3



IML Gaussian Mixture Models Adrian Hirt

4 GMM compared to k-Means

Fig. 3: Comparison between k-Means (left) and GMM (right)

As we can see here, the GMM captures the ”small cluster” on the left side of the graph better than
k-Means. k-Means groups the points of the small cluster together with the points of the large, stretched
cluster.
The GMM on the other hand seperate the small cluster from the large, stretched cluster.

The k-Means algorithm with Lloyd’s heuristic can be seen as a special case of Hard-EM for GMMs,
with:

• Uniform weights over mixture components (distributions)

• Assuming identical, spherical covariance matrices

The k-Means can even be seen as a special case of Soft-EM for GMM with the assumptions from above
as well as:

• Additional variances tend to 0

5 Soft-EM vs. Hard-EM

Soft-EM uses ”soft assignments” to clusters, meaning it only assigns a probability γj(xi) for point xi
belonging to cluster j.
The Hard-EM algorithm on the other hand assigns each point to one, and only one cluster, so points at
the ”edges” of clusters (where multiple clusters overlap) pose a problem.

In general, Soft-EM will usually result in higher likelihood values because it can deal better with over-
lapping clusters.

6 Initialization

As with similar problems, we face the question on how to initialize the parameters we wish to optimize
over. For GMMs, we can do it as follows:

Weights: Typically use uniform distribution
Means (µ): Randomly initialize (use k-Means++)
Variances (Σ): Initialize as spherical, e.g. according to empirical variance in the data
Number of clusters (k): Generally can use the same techniques as with k-Means. However, with GMMs
we can use cross-validation, which usually works quite well. We aim to maximize the log-likelihood on
the validation set.

4



IML Gaussian Mixture Models Adrian Hirt

7 GMMs for density estimation

We can not only use GMMs for clustering, but we can also use GMMs to estimate a density over a set
of points X and then use any other classification method.
E.g.:

• Model P (x) as Gaussian mixture

• Model P (y|x) using logistic regression, neural networks, etc.

This combines the advantage of accurate predictions / robustness from discriminative models (e.g. Neural
Networks) with the ability to detect outliers from generative models.

8 Anomaly detection

We can also use mixture models for detecting anomalies in the data. For this, we can compare the
estimated density of a data point against a threshold, and if the density is below that threshold, we call
the point an anomaly.

Fig. 4: Visualization of the decision threshold

As an example: In the graphic above, we have a Probability for each point x in the plane. If P (x)
is high, we have a peak at that point. Now, for some given threshold λ: If P (x) < λ⇔ x is an anomaly.

Choosing the right value for the threshold λ is challenging if we have no examples of anomalies.

If we have some anomalies, we can choose the right value for λ by:

• Varying the threshold, which trades false-positives and false-negatives (and set the value of λ
according to which one is ”less bad” (e.g. spam detection, cancer detection, etc.)

• Can use the precision-recall curves / ROC curves as evaluation criterium (e.g. maximize the F1
score)

With this, we can optimize the threshold (e.g. via cross-validation).

5



IML Gaussian Mixture Models Adrian Hirt

9 Semi-supervised learning with GMMs

We had so far:

Supervised Learning: Data consists of (feature, label)-pairs
Unsupervised Learning: Data consists of feature vectors only (unlabeled data)

Often it’s possible to obtain a large amount of unlabeled data, but labeled data is expensive (e.g. spam
needs to be classified manually). This is where Semi-supervised learning is useful: Semi-supervised
learning learns from the (large amount of) unlabeled data and the (small amount of) labeled data.

If we recall the MLE for GMMs, we have:

w∗
j =

1

n

n∑
i=1

γj(xi) µ∗
j =

n∑
i=1

γj(xi)xi

n∑
i=1

γj(xi)
Σ∗
j =

n∑
i=1

γj(xi)(xi − µj)(xi − µj)T

n∑
i=1

γj(xi)

and then
γj(x) = P (z = j|x,Σ∗, µ∗, w∗)

Now, in Semi-supervised learning, for datapoints x that have a label y, it must hold that:

γj(xi) = [j = yi]

In other words, this means that the GMM must assign all datapoints x which already have a label y the
correct label.

With this, we now can formulate a EM for Semi-supervised learning:

While not converged do:

E-step: For all unlabeled points:

γ
(t)
j (xi) = P (Z = j|xi, µ(t−1),Σ(t−1), w(t−1))

For each labeled point xi with label yi:

γ(t)(xi) = [j = yi]

For unlabeled points, it’s the same as the Soft-EM, and for labeled points we just set the probability
of the point xi belonging to label yj to 1, and 0 for all other clusters.

M-step: Fit clusters to weighted data points:

w
(t)
j ←

1

n

n∑
i=1

γ
(t)
j (xi) µ

(t)
j ←

n∑
i=1

γ
(t)
j (xi)xi

n∑
i=1

γ
(t)
j (xi)

Σ
(t)
j ←

n∑
i=1

γ
(t)
j (xi)(xi − µ(t)

j )(xi − µ(t)
j )T

n∑
i=1

γ
(t)
j (xi)

This is the same as for the Soft-EM.

Basically, the only difference between the EM for Semi-supervised learning and the Soft-EM is that γj is
calculated differently for labeled points in the Semi-supervised EM. All other steps are exactly the same.

6



IML Gaussian Mixture Models Adrian Hirt

10 Sources

• Introduction to Machine Learning Class at ETH (Prof A. Krause) (https://las.inf.ethz.ch/teaching/introml-
s19)

10.1 Images

1. Introduction to Machine Learning, Lecture on the 15.05.2019, Page 5

2. Introduction to Machine Learning, Lecture on the 15.05.2019, Page 11 & 12

3. Introduction to Machine Learning, Lecture on the 15.05.2019, Page 24 & 25

4. Introduction to Machine Learning, Lecture on the 21.05.2019, Page 14

7


