IML Generative Adversarial Networks Adrian Hirt

1 Prerequisites

1.1 Inverse transform method

With the inverse transform method, we can represent a difficult random variable as the result of a func-
tion applied to a uniform random variable (which is usually easy to generate).

In this example (in 1D), let X be a difficult random variable (which is hard to sample from but we
know the distribution function of it) and U be a uniform random variable over the interval [0, 1].

As we know, a random variable is defined by its Cumulative distribution function. The CDF of a
random variable is a function from the domain of the definition of the variable to the interval [0, 1], and
in 1D is defined as:

In other words: CDFx(x) is the probability that the random variable X is smaller (in its respective
distribution) than the parameter z.

For the uniform random variable U, we have:

P(X =x)
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Fig.1: Plotted CF Dy

We will suppose the function CDFx is invertible and its inverse is denoted by C'DF;I.

define:

Then we
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Now, we can use this inverse CDF to define
Y = CDF'(U)

which results in:
CDFy(y) = P(Y <y) = P(CDFx'(U) < y) = P(U < CDFx(y)) = CDFx(y)

This means that X and Y define the same random variable, i.e. they both follow the same distribution.
As we have defined Y as a function of the uniform random variable U, we can sample from U (which is
easy) and then compute X.

In other words: The inverse transform method is a way to generate a random variable that follows a
given distribution by making a uniform random variable go through a transform function (inverse CDF).
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Fig. 2: Ilustration of the inverse transform method. Blue: Uniform distribution over [0,1]. Orange:
Standard gaussian distribution. Grey: The mapping from the uniform to the gaussian distribution
(inverse CDF).

2 Implicit generative models

2.1 Example

Let’s start with an example: suppose we have x x n-Images, that all repsesent black-and-white images
of cats. We can reshape each image to an N = n - n vector such that each image can be represented by
a vector. However, we can’t just create a random vector, reshape it into a square and get an image of a
cat.

This means that we can say that all vectors that represent an image of a cat follow some distribution
that we’d like to learn. This means that if we find the distribution of the ”cat image vectors”, we can
create new images of cats.

However, the distribution that generates such vectors is highly complex over a large space, and even
if we assume such a distribution exists, we can’t express it explicitly.

What we can do on the other hand is take a more simple distribution, e.g. a low-level Gaussian to
draw some random numbers, and then use the inverse transform method from before with a neural
network as the function to compute a ”cat image vector” from the random noise.

2.2 Using a neural network

We are given a sample of (unlabeled) points {1,...,7,} drawn from X. We wish to learn the model
X = G(Z;w) where Z is a ”simple” distribution (e.g. low-dimensional Gaussian) and G is some flexible
nonlinear function (neural net).
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Our goal is to generate a new datapoint Z by sampling from Z, and then applying the neural net-
work G to obtain & that ”looks” like it’s directly drawn from X.

The key challenge is that it’s hard to compute the likelihood of the data. This means we need alternative
/ surrogate objective functions for the training.

3 Generative Adversarial Network (GAN)
3.1 General Idea

A generative adversarial network uses discriminative learning (classification) to train a generative model.
The illustration below provides an overview of the idea.
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Fig. 3: lustration of a GAN

Here, we have a discriminator D that gets an image as input, which is either real (from training data)
or fake (generated from generator G). Its goal is to predict the Real/Fake label as correctly as possible.
On the other side, we have the generator G that gets random noise (e.g. drawn from a Gaussian) as
input, and then generates a new, fake image. Its goal is to mimic the ”distribution” from which the
original training data is from as closely as possible, such that the classifier cannot distringuish a real
from a fake image.

Key idea: optimize the parameters w to make samples from model hard to distinguish from data
sample.

3.2 GAN from 2 Neural Networks

We can implement a GAN by using two neural networks:
e The generator G tries to produce realistic examples
e The discriminator D tries to detect "fake” examples

This can be viewed as a ”game”, where:

~ 1 if z is real

D : R wants: D(x) = o
~ 0 if z is fake

G :R™ — R? wants: D(G(z)) ~ 1 for samples (noise) z
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Training this GAN requires finding a saddle point rather than a (local) minimum:

Fig. 4: The red dot mark the saddle point which we want to find as the solution (minimizes w¢g and
maximizes wp).

3.3 Convergence

The capacity of a neural network is the ”scope” of the types of mapping functions that it’s able to learn.
A neural network with a too small capacity will underfit and a neural network with too large capacity
will overfit (memorize the training dataset).

Now, if G and D have "enough” capacity, then the data generating distribution is a saddle point of

min max M (wg,wp)
wa wp

In practice, we train the model on finite training data. This means we have the danger of memorization,
and the discriminator should not be ”too powerful”.

3.4 Simultaneous gradient descent

The common training approach to train a GAN on a set of training data is to simultaneously apply
(stochastic) gradient descent to the empirical GAN objective:

The gradients are approximated by samples of (minibatches of) data points.
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As illustrated in the picture below, the (stochastic) gradient descent converges (with correct choice of
learning rate etc.) to the saddle point:
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Fig. 5: The gradient descent method approaching the saddle point of the distribution.

3.5 Challenges

As the GANSs are a relatively recent idea, a lot of active research is done to solve some of the problems.
Some of the problems are listed in the following:

Oscillations / divergence: As with all neural networks, a GAN might oscillate or even diverge,
making it impossible to find a solution. One solution is to use a regularizer (gradient penalties). As this
is still a recent research topic, the lecture didn’t elaborate on that topic.

Mode collapse: Another challenge is that, due to the discriminator, the GAN might ”collapse” on
a few modes of the data, this means the GAN can only represent a subset of the original data.
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4

Sources

e Introduction to Machine Learning Class at ETH (Prof A. Krause) (https://las.inf.ethz.ch/teaching/introml-

- W

s19)
Understanding Generative Adversarial Networks (GANs) (J. Rocca)

(https:/ /towardsdatascience.com /understanding-generative-adversarial-networks-gans-cd6e4651a29)
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