
IML Generative Modeling Adrian Hirt

1 Difference to discriminative modeling

1.1 Discriminative modeling

Most machine learning problems that are encountered in the real world are of discriminative nature.
Discriminative modeling is a form of supervised learning. It aims to estimate a function that ”fits” the
labeled training data.

One example of such a problem would be: ”Given a painting, determine if the painting was made
by Banksy or not.” For that, the model is given a training set, which contains paintings of Banksy and
aintings made by other artists (or totally different images). Each image in the training set has a label,
e.g. 1 if the painting was made by Banksy, and 0 if it’s something different.
The model is then trained, and can be fed new images which it tries to deduct a probability for it being
a painting by Banksy or not.

Discriminative modeling estimates p(y|x)

In other words: The probability of a label y given data (observation) x.

1.2 Generative modeling

A generative model describes how the dataset X is generated, in terms of a probabilistic model (some
distribution). By sampling from this model, we can generate new data.

Generative modeling estimates p(x)

In other words: The probability of observing observation x.

If the dataset is labeled, we can also build a model that estimates p(x|y).

1.3 Difference

The general difference is that a discriminative model can only output probabilities of labels against a
new datapoint. Even if it has an accuracy of 100% (perfect discriminative model), it can never generate
new data.

A generative model on the other hand can output a new datapoint, which has a high chance of be-
longing to the original data set (the model can predict the distribution from which the dataset was
generated from really well).

1

IML Generative Modeling Adrian Hirt

2 Generative modeling basics

2.1 Generative modeling in a nutshell

Given a dataset X (which may or may not be labeled), our goal is the following:

• We have some dataset X

• We assume that the data in X has been generated by some (unknown) distribution pdata

• A generative model pmodel tries to mimic pdata as closely as possible. By using the model
(distribution) pmodel we can generate new datapoints X̂ that appear to originate from pdata

• pmodel is close enough to the original pdata if:

1. It can generate new datapoints that appear to have been drawn from pdata

2. It can generate examples that are different from the datapoints in X, that is the model
shouldn’t simply reproduce the datapoints from X.

2.2 Parametric modeling

Because the true distribution of the data pdata is unknown, we have to approximate it using a model.
However, there are infinitely many models pmodel that we can use to approximate the original distribution.

To approach the problem in a structured manner, we use parametric modeling :

A parametric model pθ(x) is a family of density functions that can be described (characterized) by
a finite number of parameters θ.

For example if we have a 2D plane with rectangle on it, where the probability of a point be-
ing in the box is uniform, and a point being outside has probability 0, we can identify each rectangle
by four parameters: The coordinates on the bottom-left (θ1, θ2) and top-right (θ3, θ4).

This means not that every density function pθ(x) in this parametric model can be identified
by the set of parameters θ = {θ1, θ2, θ3, θ4}.

2.3 Likelihood

The likelihood L(θ|x) of a parameter set θ gives us the plausability of the parameter set θ given
data point x.

It is defined as

L(θ|x) = pθ(x)

In other words: The likelihood of θ given some observed datapoint x is defined to be the value of the
probability function parameterized by θ at the point x.

If the likelihood for a given datapoint x if higher for θ1 that for θ2 (L(θ1|x) > L(θ2|x)), this means
that the model characterized by θ1 is more likely to be close to the real model (at least for the point x).

2

IML Generative Modeling Adrian Hirt

If we have a dataset X consisting of several independent datapoints, we can write

L(θ|X) =
∏
x∈X

pθ(x)

Which can be rewritten as

L(θ|X) =
∑
x∈X

log(pθ(x))

Intuitively, we are defining the likelihood of a set of parameters θ to be equal to the probability of seeing
the data X under the model parameterized by θ.

2.4 Maximum likelihood estimation (MLE)

Because of the way likelihood was defined in the previous chapter, we want to find a parameter set θ̂
that maximizes the likelihood of observing the dataset X. This is called maximum likelihood estimation
(MLE):

θ̂ = argmax
θ

L(θ|X)

Where θ̂ is called the maximum likelihood estimate.

3

IML Generative Modeling Adrian Hirt

3 Naive Bayes Generative model

Suppose we have a dataset with k features, with {x1, x2, . . . , xk} being the features (for each datapoint
x ∈ X).

The naive Bayes assumption makes the assumption that every feature xj is independent of every other
feature xh. More formally, for each pair of features xj , xh:

p(xj |xh) = p(xj)

Using the chain rule of probability, we can write the density function as a product of conditional proba-
bilities:

p(x) = p(x1, . . . , xk) = p(x2, . . . , xk|x1)

which results in

p(x1) = p(x3, . . . , xk|x1, x2) · p(x2|x1) · p(x1) =

k∏
n=1

p(xn|x1, . . . , xn−1)

Using the naive bayes rule we can simplify this as:

p(x) =

k∏
n=1

p(xk)

This is the Naive bayes model. The problem is reduced to estimating the parameters θk,l = p(xk = l) for
each feature seperately and multiplying these to find the probability for any possible combination.

For each feature we need to estimate a parameter for each value that the feature can take. There-

fore, if feature xk can take hk values, we have a total of
k∑

n=1
hk parameters we need to estimate.

The maximum likelihood estimation estimates θ̂k,l as follows:

θ̂k,l =
nkl
N

where nkl is the number of times that the feature k takes on the value l in the dataset and N is the total
number of observations.

3.1 Probability of observation x

After calculating the probability of each feature with the naive Bayes model, we can calculate the
probability of a new (unseen) datapoint x̂ by multiplying the probabilities of all the k features of the
new feature:

p(x̂) = p(x1, x2, . . . , xk) =

k∏
n=1

p(xn)

where p(xk) is the probability of the k-th feature occuring the way we chose it for x̂.

4

IML Generative Modeling Adrian Hirt

4 Gaussian Bayes classifier

4.1 Gaussian Naive Bayes classifier

As a generative model tries to infer the process according to which examples are generated, we can also
use this to classify data. The typical approach is:

1. Estimate the prior on labels P (y)

2. Estimate the conditional distribution P (x|y) for each class y

3. Obtain predictive distribution P (y|x) using the Bayes’ rule:

P (y|x) = 1
ZP (y) · P (x|y) where Z =

∑
y
P (y) · P (x|y)

In other words: First generate class label P (y), and then generate features given the class P (x|y).

Here, we model the class label as generated from categorical variable:

P (Y = y) = py y ∈ Y = {1, . . . , c}

The d features are then modeled as conditionally independent given Y:

P (X1. . . . , Xd|Y) =

d∏
i=1

P (Xi|Y)

I.e. given a class label, each feature is ”generated” independently of the other features. However, we
still need to specify the feature distributions P (Xi|Y).

We can do that by modeling the features as (conditionally) independent Gaussians:

P (xi|y) = N (xi;µy,i, σ
2
y,i)

Where µy,i and σ2
y,i depend on class y and feature i.

Using the naive Bayes approach, we can calculate these as follows:

Given training data D = {(x1, y1), . . . , (xn, yn)}, calculate:

MLE for class prior: P̂ (Y = y) = p̂y = Count(Y=y)
n (how likely is class label y)

MLE for feature distribution: P̂ (xi|y) = N (xi; µ̂y,i, σ
2
y,i):

µ̂y,i =
1

Count(Y = y)

∑
j:yy=y

xj,i

where xj,i is the value of feature i for instance j (xj , yj)

σ2
y,i =

1

Count(Y = y)

∑
j:yy=y

(xj,i − µ̂y,i)2

We can then use these to make a prediction for a new point x:

y = argmax
y′

P̂ (y′|x) = argmax
y′

P (y′)

d∏
i=1

P̂ (xi|y′)

5

IML Generative Modeling Adrian Hirt

4.2 Decision rules for binary classification

As stated before, we want to predict y = argmax
y′

P (y′|x).

For a binary classification task (i.e. c = 2, y ∈ {+1,−1}) this is equivalent to

Y = sign

(
log

P (Y = 1|x)

P (Y = −1|x)

)

which gives +1 if P (Y = 1|x) > 0.5 and −1 otherwise.

The function f(x) = log P (Y=1|x)
P (Y=−1|x) is called the discriminant function.

4.3 Generalized MLE for Gaussian Naive Bayes Classifier

As before, in section 4, we have a datamatrix x and label vector y. Again, the labels are generated from
categorical variable P (Y = y) = py.
And again, we model the features as generated by a multivariate Gaussian:

P (x|y) = N (x;µy,Σy)

where µy is the mean and Σy is the covariance matrix:

Σy =

σ
2
y,1

. . .

σ2
y,d



As before, the MLE for class label distribution is given by: P̂ (Y = y) = p̂y = Count(Y=y)
n

The MLE for feature distribution is now P̂ (x|y) = N (x; µ̂y, Σ̂y) with:

µ̂y =
1

Count(Y = y)

∑
i:yi=y

xi

Σ̂y =
1

Count(Y = y)

∑
i:yi=y

(xi − µ̂y)(xi − µ̂y)T

To now use this model as a binary classifier (y ∈ {+1,−1}), we can write the discriminant function

f(x) = log P (Y=1|x)
P (Y=−1|x) as:

f(x) = log
p

1− p
+

1

2

[
log
|Σ̂−|
|Σ̂+|

+
(
(x− µ̂T−)Σ̂−1− (x− µ̂−)

)
−
(
(x− µ̂T+)Σ̂−1+ (x− µ̂+)

)]

With this, we can predict the sign f(x) for Y : {+1,−1}. This is also called a Quadratic discriminant
analysis

6

IML Generative Modeling Adrian Hirt

4.4 Fisher’s linear discriminant analysis (LDA)

When we have c = 2 (number of labels), we fix p = 0.5 and we assume the covariances are equal
(Σ̂− = Σ̂+ = Σ̂), we can simplify the discriminant function f(x):

f(x) = xT Σ̂−1(µ̂+ − µ̂−) +
1

2
(µ̂T−Σ−1µ̂− − µ̂T+Σ−1µ̂+)

With these assumptions, we predict:

y = sign(f(x)) = sign(wTx+ w0) w = Σ̂−1(µ̂+ − µ̂−) w0 =
1

2
(µ̂T−Σ−1µ̂− − µ̂T+Σ−1µ̂+)

This linear classifier is called Fisher’s linear discriminant analysis.

As Fisher’s LDA uses the discriminant function f(x) = log P (Y=1|x)
P (Y=−1|x) , we can derive the class distri-

bution:

P (Y = 1|x) =
1

1 + exp(−f(x))
= σ(wTx+ w0)

which is the same form as logistic regression. This means that if model assumptions are met, LDA will
make the same predictions as Logistic Regression.

5 Discrete Features

So far all features were x ∈ Rd. However, if we suppose some Xi take discrete values, such as Gender,
Nationality, etc., it might not make sense to model Xi as a Gaussian.

In that case, the generative models allow to easily swap the Gaussian distribution to different distri-
butions, e.g. model P (Xi|Y) as Bernoulli, Categorical, Multinomial, ect.

5.1 MLE for Categorial Naive Bayes Classifier

Model class labels as generated from categorical variable:

P (Y = y) = py y ∈ Y = {1, . . . , c}

Model features by conditionally independent categorical random variables:

P (Xi = c|Y = y) = θ
(i)
c|y

Estimation of the parameters are as follows:

Given data set D = {(x1, y1), . . . , (xn, yn)}

MLE for class label distribution P̂ (Y = y) = p̂y = Count(Y=y)
n

MLE for distribution of feature i P̂ (Xi = c|y) = θ
(i)
c|y = Count(Xi=c,Y=y)

Count(Y=y)

Prediction for a new point x:

y = argmax
y′

P̂ (y′|x) = argmax
y′

P̂ (y′)

d∏
i=1

P̂ (xi|y′)

7

IML Generative Modeling Adrian Hirt

5.2 Discrete and continuous features

The (naive) Bayes classifier does not require each feature to follow the same type of conditional distri-
bution. For example, can model some features as Gaussian and some other as categorical.

The training (MLE) and prediction remains the same.

6 Overfitting

As MLE is prone to overfitting, we need a strategy to avoid overfitting. This can be done by:

• Restricting the model class (e.g. assumptions on covariance structure, Gaussian Naive Bayes) →
fewer parameters

• Using priors → ”smaller” parameters

6.1 Prior over parameters

For this subsection, we have c = 2 (number of labels).

For the prior of our class probabilities, we have assumed that P (Y = 1) = θ. The MLE for this

gives us θ̂ = Count(Y=1)
n . In the extreme case that n = 1 (only one datapoint), this is an extremely

inaccurate approximation of the whole distribution.

In that case, we may want to put the prior distribution P (θ) and compute the posterior distribution
P (θ|y1, . . . , yn) (i.e. if we already know the prior distribution, e.g. we know that we recieve a lot of
spam, so the label ”Spam” has a rather high probability).

The posterior distribution is:

P (θ|z1, . . . , zn) =
1

Z
P (θ)

n∏
i=1

P (yi|θ)

where P (θ) is the prior, P (yi|θ) is the likelihood (assuming the data is independent) and

Z =

∫
P (θ)

n∏
i=1

P (yi|θ) dθ

In other words: We believe that the distribution follows some probability P (θ) (learned from previous
data, assumptions, etc.) and model the distribution in such a way.

6.2 Beta prior over parameters

Again, we consider a binary classification task (c = 2). We can use the Beta Prior distribution to model
the prior distribution.

The Beta Prior has two parameters: α+ and α−. It is defined as follows:

Beta(θ;α+, α−) =
1

B(α+, α−)
θα+−1 (1− θ)α−−1

where B(α+, α−) is just a regularization function such that the integral over the function in the
interval [0, 1] equals 1 (such that the function is a distribution function).

8

IML Generative Modeling Adrian Hirt

Fig.1: Beta Prior with different parameters. As α+ and α− get larger, the function peaks more
extreme.α+ = α− = 1 we have an uniform distribution.

6.3 Conjugate distributions

A pair of prior distributions and likelihood functions is called conjugate if the posterior distribution
remains in the same distribution family as the prior.

Example: Beta Priors and Binomial likelihood:

Prior: Beta(θ;α+, α−)
Observations: Suppose we observe n+ positive and n− negative labels
Posterior: Beta(θ;α+ + n+, α− + n−)

α+ and α− act as pseudo-counts.

MAP estimate:

θ̂ = argmax
θ

P (θ|y1, . . . , yn;α+, α−) =
α+ + n+ − 1

α+ + n+ + α− + n− − 2

We have the following list of conjugated priors:

Prior / Posterior Likelihood function
Beta Bernoulli/Binomial
Dirichlet Categorical / Multinomial
Gaussian (fixed covariance) Gaussian
Gaussian-inverse Wishart Gaussian
Gaussian process Gaussian

9

IML Generative Modeling Adrian Hirt

7 Sources

• Generative Deep Learning by D. Foster (https://www.oreilly.com/library/view/generative-deep-
learning/9781492041931/ch01.html)

• Introduction to Machine Learning Class at ETH (Prof A. Krause) (https://las.inf.ethz.ch/teaching/introml-
s19)

7.1 Images

1. Introduction to Machine Learning, Lecture on the 14.05.2019, Page 34

10

